Algebra Tutorials!
Monday 23rd of October
 Home Rotating a Parabola Multiplying Fractions Finding Factors Miscellaneous Equations Mixed Numbers and Improper Fractions Systems of Equations in Two Variables Literal Numbers Adding and Subtracting Polynomials Subtracting Integers Simplifying Complex Fractions Decimals and Fractions Multiplying Integers Logarithmic Functions Multiplying Monomials Mixed The Square of a Binomial Factoring Trinomials The Pythagorean Theorem Solving Radical Equations in One Variable Multiplying Binomials Using the FOIL Method Imaginary Numbers Solving Quadratic Equations Using the Quadratic Formula Solving Quadratic Equations Algebra Order of Operations Dividing Complex Numbers Polynomials The Appearance of a Polynomial Equation Standard Form of a Line Positive Integral Divisors Dividing Fractions Solving Linear Systems of Equations by Elimination Factoring Multiplying and Dividing Square Roots Functions and Graphs Dividing Polynomials Solving Rational Equations Numbers Use of Parentheses or Brackets (The Distributive Law) Multiplying and Dividing by Monomials Solving Quadratic Equations by Graphing Multiplying Decimals Use of Parentheses or Brackets (The Distributive Law) Simplifying Complex Fractions 1 Adding Fractions Simplifying Complex Fractions Solutions to Linear Equations in Two Variables Quadratic Expressions Completing Squares Dividing Radical Expressions Rise and Run Graphing Exponential Functions Multiplying by a Monomial The Cartesian Coordinate System Writing the Terms of a Polynomial in Descending Order Fractions Polynomials Quadratic Expressions Solving Inequalities Solving Rational Inequalities with a Sign Graph Solving Linear Equations Solving an Equation with Two Radical Terms Simplifying Rational Expressions Exponents Intercepts of a Line Completing the Square Order of Operations Factoring Trinomials Solving Linear Equations Solving Multi-Step Inequalities Solving Quadratic Equations Graphically and Algebraically Collecting Like Terms Solving Equations with Radicals and Exponents Percent of Change Powers of ten (Scientific Notation) Comparing Integers on a Number Line Solving Systems of Equations Using Substitution Factoring Out the Greatest Common Factor Families of Functions Monomial Factors Multiplying and Dividing Complex Numbers Properties of Exponents Multiplying Square Roots Radicals Adding or Subtracting Rational Expressions with Different Denominators Expressions with Variables as Exponents The Quadratic Formula Writing a Quadratic with Given Solutions Simplifying Square Roots Adding and Subtracting Square Roots Adding and Subtracting Rational Expressions Combining Like Radical Terms Solving Systems of Equations Using Substitution Dividing Polynomials Graphing Functions Product of a Sum and a Difference Solving First Degree Inequalities Solving Equations with Radicals and Exponents Roots and Powers Multiplying Numbers
Try the Free Math Solver or Scroll down to Tutorials!

 Depdendent Variable

 Number of equations to solve: 23456789
 Equ. #1:
 Equ. #2:

 Equ. #3:

 Equ. #4:

 Equ. #5:

 Equ. #6:

 Equ. #7:

 Equ. #8:

 Equ. #9:

 Solve for:

 Dependent Variable

 Number of inequalities to solve: 23456789
 Ineq. #1:
 Ineq. #2:

 Ineq. #3:

 Ineq. #4:

 Ineq. #5:

 Ineq. #6:

 Ineq. #7:

 Ineq. #8:

 Ineq. #9:

 Solve for:

 Please use this form if you would like to have this math solver on your website, free of charge. Name: Email: Your Website: Msg:

# Polynomials

An expression such as 9p is a term; the number 9 is the coefficient, p is the variable, and 4 is the exponent. The expression pmeans p . p . p . p while p means p . p and so on. Terms having the same variable and the same exponent, such as 9x and -3x are like terms. Terms that do not have both the same variable and the same exponent, such as m and m are unlike terms. A polynomial is a term or a finite sum of terms in which all variables have whole number exponents, and no variables appear in denominators. Examples of polynomials include

5x + 2x + 6x, 8m + 9mn - 6mn + 3n, 10 p, and -9

## Adding and Subtracting Polynomials

The following properties of real numbers are useful for performing operations on polynomials.

PROPERTIES OF REAL NUMBERS

For all real numbers a, b, and c,

1. Commutative properties:

a + b = b + a

ab = ba

2. Associative properties

(a + b) + c = a + (b + c)

(ab)c = a(bc)

3. Distributive property

a(b + c) = ab + ac

EXAMPLE 1

Properties of Real Numbers

(a) 2 + x = x + 2 Commutative property of addition

(b) x.3 = 3x Commutative property of multiplication

(c) (7x)x = 7(x.x) = 7x Associative property of multiplication

(d) 3(x + 4) = 3x + 12 Distributive property

The distributive property is used to add or subtract polynomials. Only like terms may be added or subtracted. For example,

12y + 6y = (12 + 6)y = 18y

and

-2m + 8m = (-2 + 8)m = 6m

but the polynomial 8y + 2y cannot be further simplified. To subtract polynomials, use the facts that -(a+b)=-a-b and -(a-b)=-a+b In the next example, we show how to add and subtract polynomials.

 Copyrights © 2005-2017